Seat No. # S.E. (Electronics Engg.) (Part-II) (Semester - III) Examination, April- 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - I IRCUIT ANALISIS AND DESIG Sub. Code: 63436 Day and Date: Thursday, 26-4-2018 Total Marks: 100 Time: 2.30 p.m. to 5.30 p.m. Instructions: - 1) All questions are compulsory. - 2) Figures to the right indicates full marks. - 3) Assume Suitable data if necessary. - 4) Standard data sheet is allowed. #### SECTION-I Q1) Attempt any three of the following: [18] - a) Draw neat circuit diagram of Bridge rectifier, derive an expression for: - i) Ripple factor - ii) Rectification Efficiency - iii) Transformer Utilization Factor - b) Design a transistorized shunt regulator with the following specifications: $V_1 = 20 \pm 20\% \text{ V}, V_0 = 5 \text{ V}, I_L = 100 \text{ mA}$ - c) Explain Voltage Tripler & Quadrupler circuits. - d) Explain the operation of L Section filter and derive expression for its ripple factor. Q2) Attempt any Two of the following: [16] - a) Design a power supply using full wave rectifier with Capacitor filter to provide an output voltage of 8 V at 50 mA and the ripple factor of 0.02. - b) Explain low pass RC circuit as an integrator. A symmetrical square wave whose peak to peak amplitude is 2 V & whose average value is zero is applied to an RC integrating circuit. The time constant equals the half period of the square wave. Find the peak to peak value of the output amplitude. - c) Explain: - i) Protection circuits for regulator. - ii) Line Regulation & Load Regulation. P. T. O. SV-150 #### Q3) Attempt any Two of the following: [16] - a) Design a series pass voltage regulator to provide output voltage of 15 V at 100 mA. The unregulated input is 25 V. Also calculate stability factor. - b) A Bridge rectifier is applied with input from a step down transformer having turns ratio of 10:1 and input 230 V, 50 Hz from mains supply. If each diode having forward resistance of 2Ω and the load resistance is of 2 KΩ, Determine: - i) DC Power output - ii) PIV across each diode - iii) Regulation efficiency - iv) % Regulation - c) Explain square & step response of RC high pass filter #### **SECTION-II** #### Q4) Attempt any Three of the following: [18] - a) Explain Voltage Divider biasing of a transistor. - b) Draw the high frequency hybrid-II model and explain the meaning of each component of a model. - c) Compare BJT and FET. - d) Write short note on bias compensation techniques. #### Q5) Attempt any Two of the following: [16] - a) Design single stage RC coupled amplifier to give a voltage gain of 80 with stability factor better than 11 and output voltage of 3 Vrms using transistor BC 107 with $h_{fe} = 110$ and frequency range 100 Hz to 1 MHz. - b) Calculate coupling capacitor C_c required to provide a low frequency 3 dB point at 125 Hz if R_s = 600 Ω , h_{te} = 800 Ω , h_{fe} = 50, R_1 = 5 K Ω , R_2 = 1.5 K Ω for - i) Ideal bypass capacitor C_e - ii) Practical bypass capacitor C_c with $R_{cc} = 15\Omega$ - c) Draw h parameter model and define h parameters for CE, CB and CC configuration. [16] Q6) Attempt any Two of the following: - a) Draw approximate short circuit high frequency model. Derive expression for unity gain bandwidth product (f_T) in terms of gm and $C_{b'e}$. - b) Draw the circuit diagram of a fixed bias and self bias circuits and derive the expressions for the stability factors. - c) Differentiate between enhanced and depletion type MOSFET. SUL-66 A.G SULEGANG SUKSEINS SULL BOLDE Total Marks: 100 Seat No. ## S.E. (Electronics) (Semester - III) Examination, April -2018 ANALOG COMMUNICATION Sub. Code: 63437 Day and Date: Friday, 27 - 04 - 2018 Time: 2.30 p.m to 5.30 p.m. Instructions: - 1) All questions are compulsory. - 2) Figures to the right indicate full marks. - 3) Assume suitable data wherever necessary. #### **SECTION - I** Q1) Solve any three. [18] - a) What is trapezoidal pattern. Sketch the pattern for - i) M < 1 - ii) M = 1 - iii) Improper phase relationship - iv) Asymmetrical modulation. - b) With a neat block diagram explain high level modulated Am transmitter. - c) Explain the following terms. - i) sensitivity - ii) selectivity - iii) fidelity. - d) For frequency modulation define following. - i) Modulation index - ii) Frequency deviation - iii) Percentage modulation. - e) Describe filter method for SSB generation. P. T. O. #### SV-151 #### Q2) Solve any Two. [16] a) An AM wave is specified as follows: $V_c(peak) = 120V$, $V_m(Peak) = 60V$, $f_c = 120$ MHz, $f_m = 0.1$ MHz & $R_1 = 60 \Omega$. Determine - i) Modulation index - ii) LSF - iii) USF - iv) Bandwidth - v) Carrier Power - vi) Total Power - vii) USB Power - viii) LSB Power - b) Draw and explain a reactance modulator. - c) Draw & explain a simple diode detector and also comment on its distortions. #### Q3) Solve any Two. [16] - Draw a balanced modulator and explain how it is used to suppress the carrier. - b) Discuss about the frequency spectrum and Bandwidth of FM wave using Bassel function. - c) Draw a superheterodyne receiver and explain how a constant If is obtained. #### SECTION - II #### Q4) Solve any three. [18] - a) What is the principle used in turned circuit frequency discriminator? Explain - b) What is time division multiplexing? Explain. - c) Draw a pulse amplitude modulator cricuit and explain. - d) Explain the following terms related to antenna. - i) radiation pattern - ii) Beam width - iii) Gain. - e) Two resistors 20 k Ω and 50k Ω are at room temperature of 290°K. Determine the thermal noise for bandwidth of 100KHz. for - i) each resistor - ii) For two resistors in series - iii) For two resistors in parallel. #### Q5) Solve any Two. [16] - a) Draw a neat block diagram and explain FM receiver. - b) What is sampling theorem? Explain different sampling techniques used in pulse amplitude modulation. - c) What is a spacewave propagation? Explain. #### Q6) Solve any Two. [16] - a) Explain how a FM signal is demodulated using a Ratio detector. - b) With neat waveforms explain the generation of pulse position modulation. - c) What is internal noise? Explain. Seat No. ## S.E. (Electronics) (Semester - III) Examination, April - 2018 NETWORK ANALYSIS Sub. Code: 63438 Day and Date: Saturday, 28 - 04 - 2018 Total Marks: 100 Time: 02.30 p.m. to 5.30 p.m. Instructions: - 1) All questions are compulsory - 2) Figures to the Right indicate full marks. - 3) Assume suitable data if necessary. #### **SECTION - I** #### Q1) Attempt any two: [16] - Draw the oriented graph of the circuit given in figure 1. Form the Incidence Matrix for the given circuit. - b) Find the current flowing through the 10Ω resistance using Node Voltage Analysis technique in figure 1. c) Derive equations for Star to Delta Transformation and Delta to Star Transformation in case of a resistive circuit. #### Q2) Attempt any two: [16] a) Derive the condition for Maximum Power Transfer in a resistive circuit. b) Find the current flowing through the 10Ω resistance by the application of Thevenin's Theorem in figure 2. c) Find the current flowing through the 10Ω resistance using Millman's Theorem for the given circuit in figure 2. #### Q3) Attempt any three: [18] - Find the equivalent parameters in case of two, two port networks connected in Series. - b) Derive the ABCD parameters in terms of Z parameters. - c) Derive the Z parameters of a symmetrical T network. - d) Find the Y parameters for the circuit given in figure 3. #### **SECTION - II** #### Q4) Solve any two: $[2\times8=16]$ - a) Derive the equations for frequencies where the voltage across capacitor and inductor in series RLC circuit is maximum. - b) Design constant-k low pass filter (T & π sections) having cutoff frequency of 2 KHz and design impedance of 500Ω . c) A 220 V, 100 Hz AC source supplies RLC circuit with capacitor and coil. If the coil has 50 mΩ resistance and 5 mH inductance, find at resonance frequency of 100 Hz, what is the value of capacitor? Also calculate Q factor and half power frequencies. #### Q5) Solve any two: $[2\times8=16]$ - a) Design m-derived band pass filter for given specifications (T-section only). Pass band range: 1 KHz to 3 KHz, Design impedance: 100 Ω Frequency of infinite attenuation: 0.9 KHz and 3.1 KHz. - b) Explain in detail the concept of complex frequency. - c) Find the transfer function V(S)/I(S) for given network. #### Q6) Solve any three: $[3\times 6=18]$ - a) Derive the design equation for symmetrical π attenuator. - b) Explain the restriction on poles and zeros for driving point functions. - c) Draw the pole zero diagram for given function v(s) and obtain v(t). $$V(S) = \frac{10s}{(s+3)(s+2)}$$ d) What is equalizer? Explain series equalizer in detail. SV-154 Total No. of Pages: 2 Seat No. # S.E. (Electronics) (Semester - IV) Examination, May - 2018 LINEAR INTEGRATED CIRCUITS Sub. Code: 63440 Day and Date : Friday, 04 - 05 - 2018 Total Marks: 100 Time: 10.00 a.m. to 1.00 p.m. Instructions: - 1) All the questions are compulsory. - 2) Assume suitable data if necessary. #### SECTION-I Q1) Solve any three of the following: $[3 \times 6 = 18]$ - a) Explain difference between Voltage follower circuit and Inverter circuit using op-amp. - b) Why the need of constant current mirror source? Explain the principle of operation of current mirror circuit? - c) State and explain the characteristics of an ideal and practical op-amp. - d) Explain the following terms with respect to Op-amp: - i) CMRR - ii) Input Offset Voltage Q2) Solve any two of the following: $[2 \times 8 = 16]$ - a) Explain in brief what is thermal drift? - b) Prove that offset minimizing resistor (R_{om}) is generally parallel combination of Input resistor (R1) & Feedback Resistor (R_f). - Draw neat circuit diagram for inverting and non inverting amplifier. Also derive expression for its gain. #### Q3) Solve any two of the following: $[2 \times 8 = 16]$ - a) Derive and explain DC Analysis of Dual Input Balanced Output Configuration differential Amplifier. - b) Derive closed loop voltage gain for Non-inverting amplifier with feedback. - c) Explain slew rate with its causes. Also derive an expression for the same. #### **SECTION-II** Q4) Solve any three of the following: $[3 \times 6 = 18]$ - a) Explain Precision rectifier with neat circuit diagram. - b) Draw and explain the I-V Converter. - c) What is Phase Lock Loop (PLL) and explain function of each block. - d) With help of neat circuit diagram explain the summing amplifier. #### Q5) Solve any two of the following: $[2 \times 8 = 16]$ - a) With help of neat circuit diagram explain the operation of RC Phase Shift oscillator. Derive an expression for output frequency. - b) What is second order Low pass filter? Explain its operation and draw its frequency response. - c) Draw and explain triangular wave Generator. #### Q6) Solve any two of the following: $[2 \times 8 = 16]$ - a) With the help of neat circuit diagram explain F-V Converter. - b) With neat circuit diagram derive and explain operation of Instrumentation amplifier using Transducer Bridge. - c) Explain application of open loop configuration of op-amp. **① ① ① ①** Seat No. S.E. (Electronics Engg.) (Part - II) (Semester - IV) (Revised) Examination, May - 2018 ### ELECTRONICS CIRCUIT ANALYSIS & DESIGN - II Sub. Code: 63441 Day and Date : Monday, 07 - 05 - 2018 Total Marks: 100 Time: 10.00 a.m. to 1.00 p.m. Instructions: - 1) All questions are compulsory. - 2) Figures to the right indicate full marks. - 3) Assume suitable data if necessary. - 4) Std. Data sheet is allowed. #### **SECTION-I** Q1) Attempt any Three of the following: [18] - a) What is negative feedback? With a help of block schematic, derive an expression for gain after feedback (Av_F). State its advantags. - b) A Complementary push pull amplifier is operated with supply voltage $Vcc = \pm 10 \text{ V}$ and delivers a power to load $R_L = 5\Omega$. Calculate: - i) Maximum AC Power output (Pac (max)) - ii) DC Power Input (P_{dc}) - iii) % Efficiency - The emitter follower circuit has Rs = 620 Ω , R_L = 2.7 K Ω , hfe = 120, hie = 4.5 K Ω , Calculate Ai, Ri, Av, Ro & Rof. - d) Prove that the maximum conversion efficiency (η) of transformer coupled class A power amplifier is 50%. #### Q2) Attempt any Two of the following: [16] a) Design a two stage Voltage series feedback amplifier to provide the following specifications: $V_{CC} = 12 \text{ V}$, $A_{VF} \ge 100$, $V_{O} = 5 \text{ V(p-p)}$, $R_{S} = 330 \Omega$, $R_{I} = 2 \text{ K}\Omega$, f = 20 Hz - 20 kHz. Use transistor BC147 with: $PD_{(Max)} = 250 \text{ m W}$, $V_{CE} = 45 \text{ V}$, $IC_{Max} = 100 \text{ m A}$, $hf_{e(min)} = 100$, $hie = 2.7 \text{ K}\Omega$. - b) What is harmonic distortion? State its cause. Derive an expression for the second order harmonic distortion using three point method. - Design a bootstrapped emitter follower circuit to provide the following specifications: Input impedance (Ri) = 470 K Ω , Lower 3 dB frequency = 50 Hz, Vo = 3 V (P-P) Load resistance $R_L = 4.7 K\Omega$, Source Resistance (Rs) = 620 Ω . OR c) Draw a neat block schematic of Current Series Feedback. Derive an expression for input impedance (Ri,), Output impedance (Ro,) and Voltage gain (gm,). #### Q3) Attempt any Two of the following: [16] a) Design a direct coupled amplifier which uses identical transistors with the following specifications as: $V_{CC} = 15 \text{ V}$, $V_{OP-P} = 9 \text{ V}$, $R_L = 5.6 \text{ K}\Omega$, $f_0 = 50 \text{ Hz}$ and stability factor (S) = 5. Calculate individual and overall gain. Use transistor BC147 with: $PD_{(Max)} = 250 \text{ m W}$, $V_{CE} = 45 \text{ V}$, $IC_{Max} = 100 \text{ m A}$, $hf_{e(Min)} = 100$, $hie = 2.7 \text{ K}\Omega$. - b) What is Class B power amplifier? Explain the operation of Class B push pull amplifier with suitable waveforms. State its merits and demerits. - c) i) Explain how bootstrapping technique is helps to increase the input impedance. - ii) An amplifier has a gain of 150 and pass band from 100 Hz to 100 KHz. If 5% of output voltage is feedback, determine the voltage gain after feedback and cut off frequencies. #### **SECTION-II** Q4) Attempt any Three of the following: [18] a) Design a Collector coupled a stable multivibrator for the frequency of 1 KHz to give output voltage of 5 V. Use transistor BC 547 with: $PD_{(max)} = 500 \text{ m W}$, $V_{CE} = 45 \text{ V}$, $IC_{(max)} = 100 \text{ m A}$, $hfe_{(min)} = 200$. - b) Explain the operation of Step down switch mode power supply with suitable waveforms. - c) Explain the operation of fixed bias bistable multivibrator. Derive equations for stable state currents & voltages of On & Off transistor. - d) Derive an expression for frequency of oscillation (f) and minimum gain requried for sustained oscillation in Wien bridge oscillator. Q5) Attempt any Two of the following: [16] a) Design a Schmitt Trigger using BJT with the following specifications: UTP = 1.5 V, LTP = 1 V, $V_{CC} = 9V$, $I_{C (Sat)} = 5 \text{ m A}$, $h_{fe} = 50$, $V_{BE (Sat)} = 0.7$ V. $V_{CE (Sat)} = 0.3 \text{ V}$. b) Design a transistorized Hartley oscillator for the following specifications: $V_0 = 3 \text{ V rms}$, Output Frequency $(f_0) = 10 \text{ MHz}$, AV = 25. Use transistor BC 147 B with: $PD_{Max} = 250 \text{ m W}$, $V_{CE} = 45 \text{ V}$, $IC_{(Max)} = 200 \text{ mA}$, $h_{fe \text{ typical}} = 330$, $h_{ie} = 4.5 \text{ K}\Omega$. c) Draw the neat circuit diagram of collector coupled Monostable Multivibrator. Explain its operation with suitable waveforms. Derive an expression for Pulse width 'T'. ### Q6) Attempt any Two of the following: - Design an phase advancing phase shift oscillator for the following specifications: Frequency of oscillation (f) = 2 KHz, Peak to Peak output amplitude $(V_{0 \text{ (P-P)}})$ = 5 V and Supply Voltage (V_{CC}) = 10 V. - b) The Self biased symmetrical bistable multivibrator has the following data: $R_{\rm C} = 4.3 \ {\rm K}\Omega, R_{\rm E} = 330\Omega, R_{\rm I} = 20 \ {\rm K}\Omega, R_{\rm 2} = 10 {\rm K}\Omega, V_{\rm CC} = 15 \ {\rm V}, V_{\rm BE(Sat)} = 0.8 \ {\rm V}, V_{\rm CE(Sat)} = 0.4 \ {\rm V} \ \& \ zero \ base \ to \ emitter \ voltage \ for \ cut \ off.$ Determine: - i) Stable state currents & Voltages. - ii) Minimum h_{fe} required. - c) Write a short note on: - i) Crystal oscillator. - ii) Switching regulator LM3524. 888 Seat No. # S.E. (Electronics Engineering) (Semester - IV) Examination, May - 2018 CONTROL SYSTEM ENGINEERING Sub. Code: 63444 Day and Date: Wednesday, 16-5-2018 Total Marks:100 Time: 10.00 a.m. to 1.00 p.m. Instructions: - 1) All questions are compulsory. - 2) Figures to the right indicate full marks. - 3) Assume suitable data wherever necessary. - 4) Use of graph papers are allowed. - 5) Use of scientific calcualator is allowed. #### SECTION - I Q1) Solve any two. [16] - a) Explain mathematical modelling of Mass, Spring, and Damper. - b) Find overall transfer function of following figure using block diagram reduction technique. c) Explain Routh criterion for stability which are difficulties arises in the Routh's criterion. Explain how it overcomes. P.T.O. Q2) Sovle any Two. [16] - a) Explain control of effect of disturbance signals by use of feedback. - b) Determine overall transfer function. Use Masons Gain Formula. - c) Draw the time response of second order system for unit step input for underdamped case and derive expression for it. - Q3) Solve any two: [18] - a) Explain steady state error and error constants. - b) The open loop transfer function is G(S) = K/S(S+1)(S+3), Sketch the root locus of the system. - c) Define time domain specifications and derive expressions for any two. #### SECTION - II Q4) Solve any two. [16] - a) Explain frequency domain specification. - b) Sketch the Bode plot for G(s) = 1/S(S+3) and Determine Gain Margin and Phase Margin. - c) Explain effect of addition of poles and zeros on Bode plot. [16] Q5) Solve any two. - a) Explain concept of state, state variable and state model. - b) Check for controllability and observability. $$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U$$ $$y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$ - c) Derive the equation for transfer function from state model for continuous time system. - Q6) Sovle any three. [18] - a) lead lag compensator. - b) PID Controller - c) Nyquist Stability Criterion - d) Polar Plot SUK 1064. SUK-YORKY Seat No. # S.E. (Electronics Engineering) (Part-II) (Semester - IV) Examination, May - 2018 ### DIGITAL SYSTEM AND MICROPROCESSOR - IV (Revised) Sub. Code: 63443 Day and Date : Monday, 14 - 05 - 2018 Total Marks: 100 Time: 10.00 a.m. to 01.00 p.m. Instructions: - 1) Figure to the right Indicates full Marks. - 2) Assume suitable data wherever necessary. #### SECTION - 1 #### Q1) Write any three [18] - a) Design full adder using IC 74138(3:8 line decoder). - b) Explain Flip-Flop Operating Characterstics. - i) Propogation delay time. - ii) Set up time. - iii) Hold time. - c) Explain Mater Slave J-K Flip-Flop. - d) Convert J-K Flip-Flop to T Flip-Flop. #### Q2) Solve any two. [16] - a) Design an even parity generator for a 4 bit input. - b) Reduce Using mapping the expression $f = \sum m(1,2,3,5,7,8,9,10,12,13)$ and implement the real minimal expression in universal form. - c) Explain Twisted Ring Counter (Johnson Counter). [16] Q3) Solve any two. - a) Design Mod-6 Synchronous counter using J-K Flip Flop. - b) Draw the logic digatram & explain - i) 4 bit serial in serial out shift register - ii) 4 bit parallel in parallel out shift register. - c) Derive Characteristics equation for all flip-flops. #### SECTION - II Q4) Answer any two of the following $[2\times8=16]$ - a) Draw and Explain Machine Cycle of instruction STA C200H. - b) Explain addressing modes of 8085 with example. - c) Interface DAC 0808 to 8085 using 8255 and write a program to generate Triangular waveform. Q5) Answer any two of the following $[2 \times 8 = 16]$ - a) Write a program for exchanging ten bytes stored at B000h to A000h. - b) Explain arithmetic & logical operations of 8085. - c) What happens when RET instruction is executed in 8085? Explain with state diagram Q6) Write short notes on ony three of the following $[3\times 6=18]$ - a) Stack instructions in 8085 - b) Mode 0 of 8255 - c) I/O Mapped I/O vs Memory mapped I/O - d) DMA Controller Seat No. # S.E. (Electronics) (Semester - III) (Revised) Examination, April - 2018 ELECTRONICS MEASUREMENT AND INSTRUMENTATION Sub. Code: 63435 Day and Date: Wednesday, 25-4-2018 Total Marks: 100 Time: 2.30 p.m. to 5.30 p.m. Instructions: - 1) All questions are compulsory. - 2) Figures to the right indicate full marks. #### **SECTION - I** Q1) Attempt any two of the following: [16] - a) Draw block diagram of measuring system and explain each block in detail. - b) Explain the principle of a successive approximation type DVM. - c) Draw and explain block diagram of cathode ray oscilloscope. - Q2) Attempt any two of the following: [16] - a) Draw and explain pulse and square wave generator. - b) Explain the working of Spectrum Analyzer. - c) Explain general classes of errors occurring in measuring system. - Q3) Write short note on any three of the following: [18] - a) CRO probes. - b) Fourier analyzer. - c) AF Generators. - d) Digital frequency meter. P.T.O. #### SECTION - II Q4) Attempt Any Two of the following: [16] - a) What is basic principle of strain Gauge? Explain construction of strain Gauge. - b) Derive Bridge Balance condition for Hays Bridge. State advantages. - c) Draw the block diagram and explain single slope A/D Converter. - Q5) Attempt Any Two of the following: - [16] - a) What is piezoelectric effect?explain the working of piezoelectric transducer. - b) What are objectives of DAS ?Explain multichannel DAS with neat block diagram. - c) Explain Andorsens Bridge. - Q6) Write short notes on (Any three) [18] 3 - a) wheatstones Bridge - b) Cold junction compensation - c) Sample and hold circuit SYL2657 d) Selection criterion of Transducer x x x -2- Seat No. Total No. of Pages: 2 ### S.E. (Electronics Engineering) (Semester-IV) Examination, May - 2018 DATA STRUCTURE & ALGORITHM Sub. Code: 63442 Day and Date: Friday, 11 - 05 - 2018 Total Marks: 100 Time: 10.00 a.m. to 01.00 p.m. Instructions: - 1) Question one is compulsory. - 2) Figures to the right indicate full marks. #### **SECTION - I** #### Q1) Attempt any two: $[2 \times 8 = 16]$ - Write a algorithm for binary search method with example also write a program. - b) Define recursion. Write a algorithm to find factorial of given number. - c) What is record? How record will represent by structure? #### Q2) Attempt any two: $[2 \times 8 = 16]$ - a) What is circular queue? Write a algorithm to add and remove item from circular queue. - b) Write a algorithm for transforming infix expression into postfix expression using suitable example. - c) Explain following operation on singly link list. - i) Insertion as first node - ii) Deletion of first node - iii) Searching node from given link list. - iv) Display nodes of link list. SV - 964 #### Q3) Write short note (any three) $[3 \times 6 = 18]$ - a) Insertion sort - b) Circular link list - c) Sparse Matrix - d) Single and multidimensional array #### **SECTION - II** #### Q4) Attempt any two: $[2 \times 8 = 16]$ - a) What is graph? Explain link list representation of graph. - b) Write a different type of tree. Explain post order traversal of binary tree with algorithm & example. - c) Explain DFS algorithm with example. #### Q5) Attempt any two: $[2 \times 8 = 16]$ - a) What is hashing? Explain different hash functions. - b) Write warshall's algorithm with an example. - c) Explain Binary search tree. Draw BST for following sequence. 150,30,180,100,10,25,220,170,8,200 #### **Q6)** Write short note (any three) $[3 \times 6 = 18]$ - a) Chaining - b) Rehashing - c) Multiway tree - d) Application of graph | 0 | | |-------|-------| | Seat | 001 - | | W.T.2 | 0/491 | | 110. | , , , | B.Sc., B.Sc. (Biotech), B.Sc. (Sugar Tech.), B.Sc. (I.T.), B.Sc. (Animation Science), B.Sc. (Forensic Science), B.Sc. (Food Processing), B.C.A., B.B.A., Law, B. Tech., B.Sc. (Nano Science), B.I.D., B.F.T.M.,B. Desh., B.D.F.C., B.C.S., B.Form, S.E.,B. Architecture, B. Textiles, B.M.M.,B.Voc. (All Degree) (Semester - IV) Examination, May - 2018 ENVIRONMENTAL STUDIES (New) (Compulsory) | | - 1 | ENV | IK | UNMENT | AL STUD | IES (| New) (Compu | isory) | |--------|------|------------|------------------------------------------------------------------------|----------------|-----------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | Tim | | 1.00 a | | | - 2018 as are compuls he right indica | 1 | | otal Marks : 70 | | 01) | Sele | ect co | rrect | t answer fron | n the given a | lternat | ives. | [10] | | | i) | Ozo | ne ii | n the atmosp | here is prese | ent in t | he layer | * | | | | a) | Stra | atosphere | | b) | Troposphere | | | | | c) | The | ermosphere | | d) | Inosphere | | | | ii) | Mal | harashtra has large mineral deposits of | | | | | | | | | a) | Mic | ca | | b) | Iron | | | 200 | | <u>c</u>) | Bau | uxite | | d) | Gold | 4***
L | | | iii) | Foll | lowir | ng is a man-n | nade disaster | | - No. of the Control | | | | A. | a) | Rai | in | | b)- | Cyclone | | | | | (2 | Nu | clear hozard | | d) | Drought | | | | iv) | Env | vironmental day is celebrated on | | | | | | | | | a) | 15 | August | | b) | 5 June | | | | | c) | 22/ | April | | d) | 16 September | | | v) Air | | Air | r pollution (preventation and control) Act in India was enacted in the | | | | | | | | | year | | | | | | | | | | a) | 197 | 72 | | b) | 1986 | | | | | C) | 198 | 39 | | (D) | 1981 | | | | vi) | Foll | ollowing is Ex-situ biodiversity conservation method. | | | | | | | | | 2) | Nat | tional Park | | b) | Seed bank | | | | | c) | Bio | sphere reserv | ve | (d) | None of the abo | ve 🧷 | | | vii) | Foll | owin | ng is non-rene | ewable resou | irce. | | of by | | | | a) | Wir | nd | | b) | Water | A DAY | | | | c) | Sun | llight | | de | Petroleum | | | | | | | = | | | | | | viii) | Foll | lowing gas is re | esponsible for a | cid ra | nin. | | | |-------------------|------------|-------------------|----------------------|--------|-------------------|-------------|--------------| | | a) | CFC | | b) | CO | | 11/1 | | | c) | SO, | | d) | H,S | | S | | ix) | Noi | se pollution is a | measured by | 61 | 2 | , Veni | N. P. | | | | Hertz | | b) | Dynes | 4 = | 1 | | | c) - | Joules | | de | Decibel | | | | x)~ | The | disposing metl | hod for biomed | ical v | vaste is | | | | | a) | Incineration | | b) | Vermicon | nposting | | | | c) | Landfilling | | d) | Compost | ing | | | Q2) Ansv | wer a | ny three of the | following. | | | | [15] | | a) | | at are various m | ethod for contr | ollin | g the grow | ing popul | ation in our | | b) | | 1.7 | Explain the types | offo | od chain w | ith cuitabl | e evennles | | c) | Give | an account of | consumerism in | rela | tion to env | ironment | c champies. | | | | | gement of earth | | | nommene. | | | | | | of deforestation | _ | | | | | O3) Write | cho | rt notes on any | thron | | | | ra my | | - N | Mini | | unee. | | | | [15] | | | | er pollution | | | | | [15] | | | | tu conservation | | | | i de la | X | | | E 10 | al Warming | | | | 1 + | * | | | 70.00 | an right | | | | * 7 | | | | | ronmental Ethic | es . | | | 2 | | | | | | | | S NOT TO | san 2 c | Part Beauty | | | | | nportances of en | iviroi | nmental stu | dies relate | | | aware | eness | • | OB | | | | [10] | | W/hat | are n | atural racourse | OR | - C | - Z I | D' | C | | as a r | | | s? Give the type | e 01 n | atural reso | urces. Dis | cuss forest | | Q5) Give t | forma | ation and enviro | nmental impact
OR | of aci | id rain and (| Ozone dep | oletion.[10] | | Give | salier | nt features of w | ildlife protectio | n Act | of India. | | | | Q6) What | are th | ne steps taken fo | or water conserv | ation | . Discuss r | ain water | harvesting | | techni | | | | | The second of the | - West | [10] | | | | | OR | | | | | | Expla | in the | e concept of ec | osystem & disc | 1100 0 | nerov flou | in it? | X. | ### मराठी रूपांतर | सूचना : | | 1) | सर्वे प्रश्न लिहणे गरजेचे आहेत. | | | | |---------|------|--------|--|----------------------|--------------------------|--| | | | 2) | प्रश्नांच्या उजवीकडील संख्या पूण | र्ग गुण दर्शवित | गत. | [10] | | | | A A | | | - 1 | - Marie San Carlot | | | | - | तो योग्य पर्याय निवडा. | | | [10] | | i |) | ओड़ | गोनचा थर वातावरणातील कोणत्या १ | ररात असतो. | | | | | | अ) | स्ट्रॅटोस्फिअर | ৰ) | ट्रोपोस्फिअर | | | | | क) | थर्मीस्फिअर | ड) | आयनोस्फिअर | | | ii | i) | महार | ाष्ट्रात मोठ्या प्रमाणात कोणते खनिज | सापडते. | | | | | | अ) | मायका | ਕ) | लोह | | | | | क) | बॉक्साइट | ਤ) | सोने | | | ii | ii) | खाल | तिलपैकी कोणती आपत्ती मानवनिर्मित | न आहे. | | | | | | अ) | पाऊस | ਕ) | वादळ | | | | | क) | आण्विक | ਵ) | दुष्काळ | | | iv | v) | पर्याव | तरण दिवस कोणत्या दिवशी साजरा | केला जातो. | | A | | | | अ) | 15 ऑगस्ट | ਕ) | 5 जून | NOT . | | | | क) | 22 एप्रिल | ਤ) | 16 सप्टेंबर | KNA | | V |) | भारत | ति हवा प्रदूषण (नियंत्रण व प्रतिबंध) | कायदा कोण | गत्या साली समत झाल | i. | | | - | अ) | 1972 | ਕ) | 1986 | | | | 10 | क) | 1989 | ਵ) | 1981 | | | V | i) | खार्ल | ोलपैकी कोणती जैवविधतेची संकल | ग्ना परस्थानी | संर्वधन पध्दतीमध्ये येते | 4 | | | | अ) | राष्ट्रीय उदयाने | <u>a</u>) | सीड बँक | | | | | क) | जैवविधतेचे आरक्षित प्रदेश | ਵ) | यापैकी नाही | | | vi | ii) | | ाल पैकी कोणते संसाधन अपुर्ननिर्मिति | 20 | | | | | | अ) | वारा | ন) | जल | | | | | 175 | सूर्यप्रकाश | ਭ) | पेट् <mark>रोलियम</mark> | | | vi | iii) | | | | V | | | | | अ) | CFC | ন) | CO | | | | | क) | SO, | ਭ) | HS | | | ix |) | | ाद्षण मोजण्याचे एकक कोणते? | 0) | 1125 | | | 7.03 | 1 | अ) | हर्टस | <u>&</u> | डाईन्स | A TOTAL OF THE PARTY PAR | | | | क) | ज्यलस | ₹) | डेसीबल । | And the second | | | | 40) | -3.41 | 2) | 9/11401 | - | | | 20 20 000 | ल्हेवाट लावण्यासाठी कोणती प्रक्रिया केली जाते? | | |--------------|--|---|-------------| | x) | 10 3 | व) गांडुळखत | | | | अ) इंसिनरेशन | | | | | क) जमीनभरण | ड) कपस्टि | X. | | | | 10 | [15] | | प्र.2) खार्ल | लिपैकी कोणत्याही तीन प्रश्नांची | उत्तर लिहा. | [15] | | अ) | देशात वाढणारी लोकसंख्या निय | त्रित करण्यासाठी कोणते उपाय योजले जातात? | | | ন্ত্ৰ) | अनसाखळीची व्याख्या सागा. | अन्नसाखळीचे प्रकार सोदाहरण स्पष्ट करा. | | | क) | पर्यावरणाच्या दृष्टीकोणातून चंग | | | | ਵ) | भूकंपाचे आपत्ती व्यवस्थापन स | | | | इ) | जंगलतोडीची कारणे या विषयी | चर्चा करा. | | | | | | (15) | | प्र.3) खाल | निलपैकी कोणत्याही तीन टिपा लि | हा. | [15] | | अ) | खाणकाम | | | | ন্ত্ৰ) | जलप्रदूषण | | | | क) | मूळस्थानी संवर्धन | | | | ਫ) | वैश्विक तापमान | | - 1 | | ₹) | मानवी हक्क 🌎 | | of by | | फ) | पर्यावरणीय नितीमुल्ये | | JA* | | | | al- | [10] | | प्र.4) जन | नागृती संदर्भात पर्यावरण अभ्यासा | | [10] | | | | किंवा | | | ्रनैसर्ग | र्गेक साधनसंपत्ती म्हणजे काय? नै | सर्गिक साधनसंपत्तीचे प्रकार सांगा. जंगल एक संसा | धन चचा करा. | | | | | [4.0] | | प्र.5) आम | लपर्जन्य व ओझोन क्षयाची निर्मित | ो व त्याचे पर्यावरणीय <mark>दुष्परिणाम सांगा</mark> . | [10] | | | | किंवा | | | भारत | तातील वन्य जी <mark>व संवर्धन कायदय</mark> | ातील प्रमुख तरतुदी सांगा. | | | | | | [4.0] | | प्र.6), जल | संवर्धनाचे उपाय कोणते? पावसा | च्या पाण्याचे संकलन करण्याची पध्दती स्पष्ट करा. | [10] | | | | किंवा | | | परिस | संस्थेची संकल्पना स्पष्ट करून त्या | तील ऊर्जावहनाविषयी चर्चा करा. | | | | | | | | | | $\nabla \nabla \nabla \nabla$ | CVE . | | | | | | | | de . | | | | | | (C) | |